
 
Wells upgradient and downgradient of a hazardous waste site are sampled to determine whether 
the concentrations of some toxic organic compound known to reside in drums at the site are 
greater in the downgradient wells.  Are they greater at the α = 0.01 significance level?  If so, the 
ground water is declared to be contaminated, and the site will need to be cleaned up.

Measurements of a biological diversity index are made on sixteen streams.  Eight of the streams 
represent "natural" conditions, while the other eight have received urban runoff.  Is the 
biological quality of the urban streams worse than that of the "natural" streams? 

Unit well yields are determined for a series of bedrock wells in the Piedmont region.  Some wells 
tap areas where fracturing is prevalent, while other wells are drilled in largely unfractured rock.  
Does fracturing affect well yields, and if so how? 
 

These are examples of comparisons of two independent groups of data, to determine if one 
group tends to contain larger values than the other.  The data are independent in the sense that 
there is no natural structure in the order of observations across groups -- there are no pairings of 
data between observation 1 of group 1 and observation 1 of group 2, etc.  Where such a pairing 
does exist, methods like those of Chapter 6 should be used.  In some cases it is known ahead of 
time which group is expected to be larger (a one-sided test), and in other cases it is not (a two-
sided test).  This chapter will present and discuss the rank-sum test, a nonparametric procedure 
for determining whether two independent groups differ.  In the special case where the data 
within each group are known to be normally distributed, and the differences between the groups 
are additive, the t-test may also be used.  Graphical presentations of the test results will be 
quickly surveyed.  Finally, methods for estimating the magnitude of the difference between the 
two groups are presented, including the Hodges-Lehmann estimator, one of a class of efficient 
and resistant nonparametric estimators unfamiliar to many water resources scientists. 

Chapter 5
Differences between Two
Independent Groups
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5.1   The Rank-Sum Test 

The rank-sum test goes by many names.  It was developed by Wilcoxon (1945), and so is 
sometimes called the Wilcoxon rank-sum test.  It is equivalent to a test developed by Mann and 
Whitney near the same time period, and the test statistics can be derived one from the other.  
Thus the Mann-Whitney test is another name for the same test.  The combined name of 
Wilcoxon-Mann-Whitney rank-sum test has also been used. 
 

5.1.1   Null and Alternate Hypotheses 
In its most general form, the rank-sum test is a test for whether one group tends to produce 
larger observations than the second group.  It has as its null hypothesis: 
 H0: Prob [x > y] = 0.5 
where the x are data from one group, and the y are from a second group.  In words, this states 
that the probability of an x value being higher than any given y value is one-half.  The alternative 
hypothesis is one of three statements: 
 H1: Prob [x > y] ≠ 0.5 (2-sided test -- x might be larger or smaller than y). 
 H2: Prob [x > y] > 0.5 (1-sided test -- x is expected to be larger than y) 
 H3: Prob [x > y] < 0.5 (1-sided test-- x is expected to be smaller than y). 

Note that no assumptions are made about how the data are distributed in either group.  They 
may be normal, lognormal, exponential, or any other distribution,  They may be uni-, bi- or 
multi-modal.  In fact, if the only interest in the data is to determine whether one group tends to 
produce higher observations, the two groups do not even need to have the same distribution! 

Usually however, the test is used for a more specific purpose -- to determine whether the two 
groups come from the same population (same median and other percentiles), or alternatively 
whether they differ only in location (central value or median).  If both groups of data are from 
the same population, about half of the time an observation from either group could be expected 
to be higher than that from the other, so the above null hypothesis applies.  However, now it 
must be assumed that if the alternative hypothesis is true, the two groups differ only in their 
central value, though not necessarily in the units being used.  For example, suppose the data 
are shaped like the two lognormal distributions of figure 5.1.  In the original units, the data have 
different sample medians and interquartile ranges, as shown by the two boxplots.  A rank-sum 
test performed on these data has a p-value of <0.001, leading to the conclusion that they do 
indeed differ.  But is this test invalid because the variability, and therefore the shape, of the two 
distributions differs?  Changing units by taking logs, the boxplots of figure 5.2 result.  The logs 
of the data appear to have different medians, but similar IQR's, and thus the logs of the data 
appear to differ only in central location.  The test statistic and p-value for a rank-sum test 
computed on these transformed data is identical to that for the original units!  Nonparametric 
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tests possess the very useful property of being invariant to power transformations such as those 
of the ladder of powers.  Since only the data or any power transformation of the data need be 
similar except for their central location in order to use the rank-sum test, it is applicable in many 
situations. 

 

ο
*  *

 
Figure 5.1 Boxplots of two lognormal distributions with 

different medians and IQRs 
 

 
Figure 5.2 Boxplots of the logarithms of the figure 5.1 data.   

 Medians still differ, while IQRs are the same. 
 

5.1.2   Computation of the Exact Test 
The exact form of the rank-sum test is given below.  It is the only form appropriate for 
comparing groups of sample size 10 or smaller per group.  When both groups have samples 
sizes greater than 10 (n, m > 10), the large-sample approximation may be used.  Remember that 
computer packages report p-values from the large sample approximation regardless of sample 
size. 
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Exact Version of the Rank-Sum test 

Situation  Two independent groups of data are to be compared.  The sample size for the 
smaller of the two groups xi, i=1,...n is designated n, while the larger sample size 
yj, j=1,...m is designated m.   

Test Statistic  Compute the joint ranks Rk . 
Rk  = 1 to (N = n + m), using average ranks in case of ties. 

The exact test statistic  
Wrs =  sum of ranks for the group having the smaller sample size, 
  =  ΣRi  i=1,n  (use either group when sample sizes are equal: n = m ) 

Decision Rule.     To reject  H0 :  Prob [x > y] = 0.5 
1.   H1 :  Prob [x > y] ≠ 0.5   (the smaller data set tends to have either higher or lower values 

than the larger data set) 
 Reject H0 if  Wrs ≤ x*α/2,n,m   or   Wrs ≥ xα/2,n,m   from Table B4 of the 

Appendix;  otherwise do not reject H0. 

2.  H2 :  Prob [x > y] > 0.5   (the smaller data set tends to have higher values than the larger data 
set) 

 Reject H0 if  Wrs ≥ xα,n,m  from Table B4;  otherwise do not reject H0 . 

3.  H3 :  Prob [x > y] < 0.5   (the smaller data set tends to have lower values than the larger data 
set) 

 Reject H0 if  Wrs ≤ x*α,n,m  from Table B4;  otherwise do not reject H0 . 
 

Example 1. 
Precipitation quality was compared at sites with different land uses by Oltmann and Shulters 
(1989).  A rank-sum test is used to determine if one of the constituents, ammonia plus organic 
nitrogen, significantly differs (α = 0.05) between the industrial and residential sites. 

 H0 :   median concentration (industrial) = median concentration (residential) 
 H3 : median concentration (industrial) ≠ median concentration (residential). 

The 10 observations at each site are assigned ranks from 1 to 20 as follows.  Note that three 
pairs of concentrations (at 0.7, 1.1, and 1.3 mg/L) are tied, and so are assigned tied ranks equal 
to the average of their two individual ranks: 
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Ammonia plus organic nitrogen concentration (in mg/L) in precipitation  
xi, yj = concentrations  Rk = joint rank 

 industrial site residential site 
    xi  Rk   xi  Rk     yj  Rk   yj  Rk  
 0.59  4 1.3 14.5 0.3  1 0.9 8 
 0.87  7 1.6 16 0.36  2 0.92 9 
 1.1 11.5 1.7 17 0.5 3 1.0 10 
 1.1 11.5 3.2 18 0.7 5.5 1.3 14.5 
 1.2 13 4.0 19 0.7 5.5 9.7 20 
 
Wrs = sum of the 10 ranks for the residential site (n=m=10, so either could be used) 
 = 78.5 
For this two-sided test, reject H0 if  Wrs ≤ x*α/2,n,m  or  Wrs ≥ xα/2,n,m.  From Table B4, 
x*.026,10,10 = 79 and x*.022,10,10 = 78.  Interpolating halfway between these for Wrs = 78.5, 
the p-value for the two-sided test is 0.024•2 = 0.048, and the decision would be to reject H0 at α 
= 0.05.  Reporting the p-value shows how very close the risk of Type I error is to 0.05.  The 
conclusion is therefore that ammonia plus organic nitrogen concentrations from industrial 
precipitation are significantly different than those in residential precipitation at a p-value of 
0.048. 
 

5.1.3   The Large-Sample Approximation 
For the rank sum test, the distribution of the test statistic Wrs closely approximates a normal 
distribution when the sample size for each group is 10 or above (figure 5.3).  With n=m=10, 
there are 184,756 possible arrangements of the data ranks.  The collection of test statistics for 
each of these comprises the exact distribution of Wrs, shown as bars in figure 5.3, with a mean 
of 105.  Superimposed on the exact distribution is the normal distribution which closely 
approximates the exact values.  This demonstrates how well the exact distribution of this test 
can be approximated, even for relatively small sample sizes.  The inset shows a magnified view 
of the peak of the distribution, with the normal approximation crossing the center of the exact 
distribution bars. 

This approximation does not imply that the data are or must be normally distributed.  Rather, it 
is based on the near normality of the test statistic at large sample sizes.  If there are no ties, Wrs 
has a mean µW and standard deviation σW when H0 is true of: 
 

 µW  =  n•(N+1)/2  [5.1] 
 

 σW  =   n•m•(N+1)/12   [5.2] 

where N = n + m. 



122 Statistical Methods in Water Resources 

 
Figure 5.3   Illustration of the distribution of Wrs and its fitted normal distribution 

 

The test statistic for the large sample approximation is computed by standardizing Wrs and 
making a continuity correction.  The continuity correction occurs because the normal 
distribution fits halfway through the top of the bars of the exact test statistic distribution (figure 
5.3).  The correction moves the probability of occurrence from the outer edge of each bar to its 
center prior to using the normal curve.  It therefore equals d/2, where d is the minimum 
difference between possible values of the test statistic (the bar width).  For the rank-sum test 
d=1, as the test statistic values change by units of one.  Zrs, the standardized form of the test 
statistic, is therefore computed as  

 Zrs =  







Wrs -  
d
 2  -  mW
sW

if Wrs > mW

0 if Wrs = mW

Wrs + 
d
 2  -  mW
sW

if Wrs < mW

[5.3]  

Zrs is compared to a table of the standard normal distribution for evaluation of the test results. 
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Example 1, cont. 
The large-sample approximation is applied to the precipitation nitrogen data.  Note that this is 
inappropriate because there are three pairs of tied values.  How close is the approximate to the 
exact p-value?  For the exact test above, Wrs = 78.5.  

 µW = 10(21)/2 = 105  σW =  10 10 (21)/12  = 13.23   

Therefore  Zrs = 
 78.5 + 1/2 -105

13.23   = −1.965  

and p ≅ 2•0.025 = 0.05 from a table of the normal distribution such as Table A2 of Iman and 
Conover (1983).  This is very close to the exact test results, and errors decrease with increasing 
sample sizes. 

5.1.3.1   Correction for ties 
Conover (1980) presents a further correction to σW when ties occur, and tied ranks are assigned.  
The formula below for σWt should be used for computing the large sample approximation 
rather than σW when more than a few ties occur. 
  

 σWt = 
nm

N(N −1)
R

k 2

k=1

N

∑ −
nm(N +1)2

4(N −1)
   where N = n+m [5.4] 

 

 

Example 1, cont. 
The tie correction is applied to the large sample approximation for the precipitation 

nitrogen data.  σWt =
100

2019
2868.5 −

100(21)2

419
= 174.61   = 13.21. 

This is essentially identical to the value of 13.23 obtained without the tie correction.  The 
test statistic Zrs and its p-value are unchanged. 

 

5.1.4   The Rank Transform Approximation 
Another approximation to the exact rank-sum test is to compute the equivalent parametric test, 
in this case the t-test, on the ranks Rk rather than on the original data themselves.  
Computations will be illustrated in detail following the presentation of the t-test in the next 
section.  The rank-transform p-value calculated in that section for the precipitation nitrogen data 
is 0.042, close to but lower than the exact value, and not as close as the large sample 
approximation.  Rank transform approximations are not as widely accepted as are the large 
sample approximations.  This is due to the fact that the rank transform approximations can 
result in a lower p-value than the exact test, while the large sample approximation will not.  In 
addition, the rank approximation is often not as close as the large-sample approximation for the 
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same sample size.  Statisticians prefer that an approximation never result in a lower p-value than 
the exact test, as this means that H0 will be rejected more frequently than it should.  However, 
this problem only occurs for small sample sizes.  For the sample sizes (conservatively, n and m 
both larger than 25) at which the rank approximation should be used, it should perform well. 
 

5.2   The t-Test 

The t-test is perhaps the most widely used method for comparing two independent groups of 
data.  It is familiar to most water resources scientists.  However, there are five often overlooked 
problems with the t-test that make it less applicable for general use than the nonparametric rank-
sum test.  These are 1) lack of power when applied to non-normal data, 2) dependence on an 
additive model, 3) lack of applicability for censored data, 4) assumption that the mean is a good 
measure of central tendency for skewed data, and 5) difficulty in detecting non-normality and 
inequality of variance for the small sample sizes common to water resources data.  These 
problems were discussed in detail by Helsel and Hirsch (1988), and will be evaluated here in 
regard to the precipitation nitrogen data. 
 

5.2.1   Assumptions of the Test 
The t-test assumes that both groups of data are normally distributed around their respective 
means, and that they have the same variance.  The two groups therefore are assumed to have 
identical distributions which differ only in their central location (mean).  Therefore the t-test is a 
test for differences in central location only, and assumes that there is an additive difference 
between the two means, if any difference exists.  These are strong assumptions rarely satisfied 
with water resources data.  The null hypothesis is stated as 
 H0  :  µx = µy   the means for groups x and y are identical. 
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5.2.2   Computation of the t-Test 

Two Sample t-test 

Situation  Two independent groups of data are to be compared.  Each group is normally 
distributed around its respective mean value, and the two groups have the same 
variance.  The sole difference between the groups is that their means may not be 
the same. 

Test Statistic   Compute the t-statistic: 

t = 
x −y 

s 1/n +1/ m
 

where  x  is the sample mean of data in the first group xi  i=1,n 
y  is the sample mean of data in the second group yj  j=1,m 

 and   s is the pooled sample standard deviation, estimating the 
    standard deviation assumed identical in both groups: 

 

                          s = 
(n −1)s

x

2 + (m −1)s
y

2

n + m −2
 

The sample variances of both groups s
x

2 and s
x

2 are used to estimate s. 

Decision Rule.     To reject  H0 :  µx = µy 
1.   H1 :  µx ≠ µy  (the two groups have different mean values, but there is no prior 

knowledge which of x or y might be higher) 
 Reject H0 if  t < −t α/2,(n+m−2)   or   t > t α/2,(n+m−2)   from a table 

of the t distribution;  otherwise do not reject H0. 

2.  H2 :  µx > µy  (prior to seeing any data, x is expected to be greater than y) 
 Reject H0 if  t > t α,(n+m−2)  from a table of the t distribution;  

otherwise do not reject H0 . 

3.  H3 :  µx < µy  (prior to seeing any data, y is expected to be greater than x) 
 Reject H0 if  t < −t α,(n+m−2)  from a table of the t distribution;  

otherwise do not reject H0 . 
 

5.2.3   Modification for Unequal Variances 
When the two groups have unequal variances the degrees of freedom and test statistic t should 
be modified using Satterthwaite's approximation: 
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Two Sample t-test with Unequal Variances 

Situation  The mean values of two independent groups of data are to be tested for 
similarity.  Each group is normally distributed around its respective mean value, 
and the two groups do not have the same variance. 

Test Statistic   Compute the t-statistic: 

t = 
x −y 

s
x

2 /n + s
y

2 / m
 

where  s
x

2 is the sample variance of the first group, and 
s

y

2
  is the sample variance of the second group. 

Also compute the approximate degrees of freedom df, where 
  

df = 
(s

x

2 /n + s
y

2 / m)2

(s
x

2 / n)2

(n −1)
+

(s
y

2 /m)2

(m −1)

 

Decision Rule.     To reject  H0 :  µx = µy 
1.   H1 :  µx ≠ µy  (the two groups have different mean values, but there is no prior 

knowledge which of x or y might be higher) 
 Reject H0 if  t < −t α/2,(df)   or   t > t α/2,(df)   from a table of the t 

distribution;  otherwise do not reject H0. 

2.  H2 :  µx > µy  (prior to seeing any data, x is expected to be greater than y) 
 Reject H0 if  t > t α,(df)  from a table of the t distribution; 

otherwise do not reject H0 . 

3.  H3 :  µx < µy  (prior to seeing any data, y is expected to be greater than x) 
 Reject H0 if  t < −t α,(df)  from a table of the t distribution;  otherwise 

do not reject H0 . 
 

Example 1, cont. 
The t-test is applied to the precipitation nitrogen data.  Are the means of the two groups of data 
equal?  As the variance for the industrial data is 1.2 while for the residential data it is 8.1, 
Satterthwaite's approximation is used rather than computing an overall variance: 
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 t = 
1.67 - 1.64

  1.17/10 + 8.12/10 
   = 0.03,  and   df = 

(1.17/10 + 8.12/10)2

 
(1.17/10)2

9   +  
(8.12/10)2

9

   = 11.5. 

Therefore from a table of the t-distribution, the p-value is 0.98.  The conclusion: fail to reject 
H0.  There is essentially no evidence that the means differ using the t-test. 

The "t-test on ranks" approximation to the rank-sum test is also computed.  This t-test is 
computed using the joint ranks Rk rather than the original data themselves:  

 trank = 
13.15 - 7.85

 5.4  1/10 + 1/10 
   = 2.19   

where 13.15 is the mean rank of the x data, etc.  Comparing this to t.025,18 = 2.10, H0 is 
rejected with a p-value of 0.042.  The medians are declared different. 
 

5.2.4   Consequences of Violating the t-Test's Assumptions 
Computing the probability plot correlation coefficient to test for normality of the two groups of 
precipitation nitrogen data, the industrial group had a PPCC of 0.895, while the residential group 
had a PPCC of 0.66.  From Table B3 of the Appendix, both correlation coefficients are below 
the critical value of 0.918 for an α of 0.05, and so both groups must be considered non-normal 
(see Chapter 4 for details on the PPCC test).  A t-test should not have been used on these data.  
However, if the normality test results are ignored, the t-test declares the group means to be 
similar, which is commonly interpreted to mean that the two groups are similar.  The rank-sum 
test finds the two groups to be significantly different.  This has the following consequences: 

1. This example demonstrates the lack of power encountered when a t-test is applied to 
non-normal data.  When parametric tests are applied to non-normal data, their power to 
detect differences which are truly present is much lower than that for the equivalent 
nonparametric test (Bradley, 1968).  Thus the t-test is not capable of discerning the difference 
between the two groups of precipitation nitrogen.  The skewness and outliers in the data inflate 
the sample standard deviation used in the t-test.  The t-test assumes it is operating on normal 
distributions having this standard deviation, rather than on non-normal data with smaller overall 
spread.  It then fails to detect the differences present. 

2. As shown by the Q-Q plot of figure 5.5, these data do not exhibit an additive difference 
between the data sets.  A multiplicative model of the differences is more likely, and logs of the 
data should be used rather than the original units in a t-test.  Of course, this is not of concern to 
the rank-sum test, as the test results will in either units be identical. 

3. A t-test cannot be easily applied to censored data, such as data below the detection limit.  
That is because the mean and standard deviation of such data cannot be computed without 
either substituting some arbitrary values, or making a further distributional assumption about the 
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data.  This topic is discussed further in Chapter 13.  It will only be noted here that all data below 
a single detection limit can easily be assigned a tied rank, and a rank-sum test computed, without 
making any distributional assumptions or assigning arbitrary values to the data. 

4. The t-test assumes that the mean is a good measure of central tendency for the  data 
being tested.  This is certainly not true for skewed data such as the precipitation nitrogen data.  
The mean of the residential data is greatly inflated by the one large outlier (figure 5.4), making it 
similar to the mean at the industrial site.  The mean is neither resistant to outliers, nor near the 
center (50th percentile) of skewed data.  Therefore tests on the mean often make little sense. 

5. When prior tests for normality are used to decide whether a nonparametric test is 
warranted, departures from normality must be large before they are detected for the small 
sample sizes (n<25 or 30) commonly investigated.  In this example, departures were sufficiently 
drastic that normality was rejected.  For lesser departures from normality, computing both the 
rank sum and t-test would protect against the potential loss of power of the t-test for non-
normal data.  Alternatively, just the rank sum test could be used for analysis of small data sets. 
 

5.3   Graphical Presentation of Results 

In Chapter 2 a detailed discussion of graphical methods for comparisons of two or more groups 
of data was presented.  Overlapping and side-by-side histograms, and dot and line plots of 
means and standard deviations, inadequately portray the complexities commonly found in water 
resources data.  Probability plots and quantile plots allow complexity to be shown, plotting a 
point for every observation, but often provide too much detail for a visual summarization of 
hypothesis test results.  Two methods, side-by-side boxplots and Q-Q plots, are very well suited 
to describing both the results of hypothesis tests, and visually allowing a judgement of whether 
data fit the assumptions of the test being employed.  This is illustrated by the precipitation 
nitrogen data below. 
 

5.3.1   Side-by-Side Boxplots 
The best method for illustrating results of the rank-sum test is side-by-side boxplots.  With 
boxplots only a few quantiles are compared, but the loss of detail is compensated for by greater 
clarity.  In figure 5.4 are boxplots of the precipitation nitrogen data.  Note the difference in 
medians is clearly displayed, as well as the similarity in spread (IQR).  The rejection of normality 
by PPCC tests is seen in the presence of skewness (industrial) and an outlier (residential).  Side-
by-side boxplots are an effective and concise method for illustrating the basic characteristics of 
data groups, and of differences between those groups.  
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Figure 5.4   Boxplots of the precipitation nitrogen data.  Note the skewness and outliers. 

 

5.3.2   Q-Q Plots  
Another method for illustration of rank-sum results is the quantile-quantile (Q-Q) plot described 
in Chapter 2.  Quantiles from one group are plotted against quantiles of the second data group.  
Chapter 2 has shown that when sample sizes of the two groups are identical, the x's and y's can 
be ranked separately, and the Q-Q plot is simply a scatterplot of the ordered data pairs (x1 , 
y1).....(xn, yn).  When sample sizes are not equal (n<m), the quantiles from the smaller data set 
are used as is, and the n corresponding quantiles for the larger data set are interpolated.  

It is always helpful in a Q-Q plot comparing two groups to plot the y = x line.  Figure 5.5 is a Q-
Q plot of the precipitation nitrogen data.  Two important data characteristics are apparent.  
First, the data are not parallel to the y = x line, and therefore quantiles do not differ by an 
additive constant.  Instead, they increasingly depart from the line of equality indicating a 
multiplicative relationship.  Note that the Q-Q plot shows that a t-test would not be applicable 
without a transformation, because it assumes an additive difference between the two groups.  
The rank-sum test does not make this assumption, and is directly applicable to groups differing 
by a multiplicative constant (rank procedures will not be affected by a power transformation).   

The magnitude of this relationship between two sets of quantiles on a Q-Q plot can be 
estimated using the median of all possible ratios (yj/xi), i=1,n and j=1,n.  This is a type of 
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Hodges-Lehmann estimator, as discussed in the next section.  The median ratio equals 0.58, and 
the line residential = 0.58•industrial is drawn in figure 5.5.  Note the resistance of the median 
ratio to the one large outlier. 

 
Figure 5.5   Q-Q plot of the precipitation nitrogen data. 

 

Second, the data are crowded together at low concentrations while spread further apart at higher 
concentrations -- a pattern indicating right-skewness.  To remedy both skewness and non-
additivity, a power transformation with θ < 1 was chosen, the base 10 log transform (θ = 0).  A 
Q-Q plot of data logarithms is shown in figure 5.6.  Note that the data are now spread more 
evenly from low to high concentrations, indicating skewness has decreased.  The slope of the 
quantiles is now parallel to the y = x line.  Thus a multiplicative relationship in original units has 
become an additive relationship in log units, with the Hodges-Lehmann estimate (see next 

^ ^

of the Hodges-Lehmann estimate of the ratios in the original units, log10(0.58) = −0.237.  The 
line parallel to y=x, log(residential) = −0.237•log(industrial), is plotted on figure 5.6.  A t-test 
would now be appropriate for the logarithms, assuming each group's transformed data were 
approximately normal. 

In summary, Q-Q plots of the quantiles of two data groups illustrate the reasonableness of 
hypothesis tests (t-test or rank-sum), while providing additional insight that the test procedures 
do not provide.  Q-Q plots can demonstrate skewness, the presence of outliers, and inequality of 

section) of the difference between log(x) and log(y) ∆  equal to −0.237.    Note that ∆  is the log 
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variance to the data analyst.  Perhaps most importantly, the presence of either an additive or 
multiplicative relationship between the two groups can easily be discerned.  Since the t-test 
requires an additive difference between two groups, Q-Q plots can signal when transformations 
to produce additivity are necessary prior to using the t-test. 

 
Figure 5.6   Q-Q plot of the logs of the precipitation nitrogen data. 

 

5.4   Estimating the Magnitude of Differences Between Two Groups 

After completion of an hypothesis test comparing two groups of data, the logical next step is to 
determine by how much the two groups differ.  The most well-known approach, related to the 
two-sample t-test, is to compute the difference between the two group means ( x  − y  ).  A more 
robust alternative, related to the rank-sum test, is one of a class of nonparametric estimators 
known as Hodges-Lehmann estimators.  These two estimators are compared in the following 
sections. 

5.4.1   The Hodges-Lehmann Estimator 
One nonparametric estimate of the difference between two independent groups is a Hodges-
Lehmann estimator ˆ ∆  (Hodges and Lehmann, 1963; Hollander and Wolfe, 1973, p. 75-77).  
This estimator is the median of all possible pairwise differences  between the x values and y 
values  
 

 ˆ ∆ = median [xi − yj]  for xi, i=1,...n  and yj, j=1,..m. [5.5] 

jkmonson
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There will be n•m pairwise differences.   

Example 2 
For the following x's and y's , compute 15 − 8 = 7,  15 − 27 = −12, etc: 
  xi  yj All Possible Differences (xi − yj) 
 15 8 7 9 17 
 17 27 −12 −10 −2 
 25 3 12 14 22 
  5 10 12 20 
 
Ranked in order from smallest to largest, the 3•4 = 12 pairwise differences are 
  −12, −10, −2, 7, 9, 10, 12, 12, 14, 17, 20, 22.   
The median of these is the average of the 6th and 7th smallest values, or ˆ ∆  = 11.  Note that the 
unusual y value of 27 could have been any number greater than 14 and the estimator ˆ ∆  would 
be unchanged.  Thus ˆ ∆  is resistant. 
 
The ˆ ∆  estimator is related to the rank-sum test, in that if ˆ ∆  were subtracted from each of the x 
observations, the rank-sum statistic Wrs would provide no evidence for rejection of the null 
hypothesis.  In other words, a shift of size ˆ ∆  makes the data appear devoid of any evidence of 
difference between x and y when viewed by the rank-sum test. 
 
ˆ ∆  is a median unbiased estimator of the difference in the medians of populations x and y.  That 
is, the probability of underestimating or overestimating the difference between the median of x 
and the median of y is exactly one-half.  If the populations were both normal, it would be a 
slightly less efficient estimator of differences in medians (or means) than would the parametric 
estimator x − y .  However, when one or both populations is substantially non-normal, it is a 
more efficient (lower variance) estimator of this difference.  
 
There is another logical nonparametric estimator of the difference in population medians -- the 
difference between the sample medians (xmed − ymed).  For example 2, (xmed − ymed) = 10.5.  
Note that the difference in sample medians is not necessarily equal to the median of the 
differences ˆ ∆ .  In addition, (xmed − ymed) is always somewhat more variable (less efficient) 
than is ˆ ∆  and so is less desirable. 

A modified version of the ˆ ∆  statistic is used as the estimate of the magnitude of the step trend 
in the seasonal rank-sum test procedure described by Crawford, Slack, and Hirsch (1983, p. 74). 
 

5.4.2   Confidence interval for ˆ ∆   
A nonparametric interval estimate for ˆ ∆  illustrates how variable the difference between the 
medians might be.  No distribution is assumed for the pairwise differences.  The interval is 
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computed by a process similar to that for the confidence interval on the median described 
earlier.  The tabled distribution of the test statistic is entered to find upper and lower critical 
values at one-half the desired alpha level.  These critical values are transformed into ranks.  After 
ordering the n•m pairwise differences from smallest to largest, the differences corresponding to 
those ranks are the ends of the confidence interval.   
 
For small sample sizes, table B4 for the rank-sum test is entered to find the critical value x* 
having a p-value nearest to α/2.  This critical value is then used to compute the ranks Ru and Rl 
corresponding to the pairwise differences at the upper and lower confidence limits for ˆ ∆ .  These 
limits are the Rlth ranked data points going in from either end of the sorted list of N=n•m 
pairwise differences. 
  

 Rl =  x* − 
n•(n+1)

2   [5.6] 

 

 Ru =  N − Rl + 1 for N = n•m [5.7] 

 
Example 2, cont. 
The N=12 possible pairwise differences between x and y were: 
  −12, −10, −2, 7, 9, 10, 12, 12, 14, 17, 20, 22.   
The median of these ( ˆ ∆ ) was 11.    To determine an α ≅ 0.10 confidence interval for ˆ ∆ , the 
tabled critical value x* nearest to α/2 = 0.05 is 7 (p=0.057).  The rank Rl of the pairwise 
difference at the lower end of the confidence interval is therefore 

 Rl =  7 − 
(3•4)

2    =  1 for n=3 and m=4. 

Ru, the rank of the pairwise difference at the upper end of the confidence interval is 
 Ru =  12. 
 
With such a small data set, the α = 2•0.057 = 0.014 confidence limit for ˆ ∆  is the range of the 
entire data set (the 1st difference in from either end), or 
 −12≤ ˆ ∆  ≤ 22. 
 
When the large-sample approximation to the rank-sum test is used, a critical value zα/2 from 
the table of standard normal quantiles determines the upper and lower ranks of the pairwise 
differences corresponding to the ends of the confidence interval.  Those ranks are 
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 Rl =  
N - za/2 • 

N (n+m+1)
3  

2   [5.8] 

 

 Ru =  
N + za/2 • 

N (n+m+1)
3  

2    + 1    [5.9] 

 =  N − Rl + 1 
 

 
Example 1 cont. 
For the precipitation nitrogen data there were N = (10)(10) = 100 possible pairwise differences. 
ˆ ∆ would be the average of the 50th and 51st ranked differences.  For a 95 percent confidence 
interval on ˆ ∆ ,  zα/2 = 1.96  and  
 

 Rl =   
100 - 1.96 • 

100 (10+10+1)
3  

2   = 24.1 

 
 Ru =   100 − 24.1 +1   = 76.9 
 
the 24.1st ranked slope from either end.  Rounding to the nearest integer, the 24th and 77th 
ranked slopes are used as the ends of the α ≅ 0.05 confidence limit on ˆ ∆ .  Note that using the 
exact formula, from Table B4 the exact α level is determined to be 2•0.026 = 0.052. 
 

5.4.3   Difference Between Mean Values 
As noted above, in the situation where the t-test is appropriate, the difference between the 
means of both groups x − y  is the most efficient estimator of the difference between the two 
groups of data.  Perhaps obvious is that when x and y are transformed prior to performing the t-
test, ( x − y ) does not estimate the difference between group means in their original units.  Less 
obvious is that a re-transformation of ( x − y ) back to original units also does not estimate the 
difference between group means, but is closer to a function of group medians.  For the log 
transformation as an example, x − y  retransformed would equal the ratio of geometric means of 
the two groups.  How close such a re-transformation comes to estimating the ratio of group 
medians depends on how close the data are to being symmetric in their transformed units.   
 

5.4.4   Confidence interval for x − y  
An interval estimate for the difference in means x − y  is also available.  It is appropriate in 
situations where the t-test may be used -- when both data groups closely follow a normal 
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distribution.  When the variances of the two groups are similar and the pooled standard 
deviation s is used in the test, the confidence interval is 
 
 

 CI = x − y   ±  tα/2,(n+m−2) • s  1/n + 1/m  ) [5.10] 
 

 
When the standard deviations of the two groups are dissimilar and cannot be pooled, the 
confidence interval becomes  
 
 

 CI =  x − y  ±  tα/2,(df) • s
x

2 n + s
y

2 m  [5.11] 
 

where df is the approximate degrees of freedom used in the t-test. 
 

Exercises 

5.1 For the precipitation nitrogen data of Example 1, what would Wrs have been had the 
industrial site been used rather than the arbitrary choice of the residential site.  What is 
the effect on the p-value? 

5.2 Historical ground-water quality data for a shallow aquifer underlying agricultural land 
shows the following nitrate concentrations (mg/L): 
  pre-1970   post-1970  
 1 2 4    1 5 14 
 1 3 5    2 8 15 
 1 3 5    2 10 18 
 2 4 10    4 11 23 
Given that we wish to test for a change in concentration between the two periods, 
should this be a one-sided or two-sided test? 

5.3 Annual streamflows for the Green R. at Munfordville, KY were listed in Exercise 4.1.  
Beginning in 1969 the stream was regulated by a reservoir.   
a. Construct a Q-Q plot, and indicate whether the flows exhibit an additive or 

multiplicative relationship, or neither. 
b. Does there appear to be a relationship between (after−before) or (after/before) and 

the magnitude of annual flow itself?  If so, explain why this might occur. 
a. Test whether flows after the reservoir came onstream are different. 
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5.4  
 X:   1.0,  2.0,  3.0,  4.0    
 Y:   1.5,  2.5,  3.5,  4.5,  5.5,  7.0,  10.0,  20.0,  40.0,  100.0   

 Using the Table B4, determine the two-sided p value for an additive difference between 
the X and Y data using the exact rank-sum test.  Then compute it using the large-sample 

^

5.5 Unit well yields, in gallons per minute per foot of water-bearing material, were contrasted 
for wells within valleys containing fracturing versus valleys with no fracturing (Wright, 
1985).  For the PPCC test for normality, r(with)=0.943 and r(without)=0.805.  Perform the 
appropriate α = 0.05 test to discern whether fracturing is associated with higher mean unit 
well yield  
 Yields with fracturing  Yields without 
 0.95  0.16 1.02  0.040 
 0.72 0.16 0.49  0.030 
 0.51 0.13 0.454 0.020 
 0.44 0.086 0.10  0.007 
 0.40 0.031 0.077 0.003  
 0.30  0.020 0.041 0.001 
 0.18  

5.6 Assume that the unit well yield data are now trace organic analyses from two sampling 
sites and that all values below 0.050 were reported as "< 0.05."  Retest the hypothesis that  
H0 : µx= µy versus  H1 : µx > µy  using the rank-sum test.  By how much does the test 
statistic change?  Are the results altered by presence of a detection limit?  Could a t-test be 
used in this situation?  

approximation.  Then compute it using the t-test on ranks.  Compute the expected 

Consider the following small data set    

difference ∆  between X and Y. 




